

Is current modelling practice *fit-for-purpose* for daylight evaluation using CBDM metrics?

Eleonora Brembilla

John Mardaljevic Francesco Anselmo

Why CBDM?

$$\times 365 \times 12 \times \left(\frac{60}{T_{step}}\right) = \text{CBDM}$$

Why CBDM?

- Predicts absolute values of luminous quantities,
 e.g. illuminance, luminance, etc.
- Uses realistic sky and sun conditions.
- Founded on standardised climate files.
- Allows 'holistic' evaluation of daylighting combined with solar shading.

Projects where CBDM has been used:

- Art Students League (New York) daylight injury study.
- Hermitage Museum (St. Petersburg) daylighting design and long-term exposure of art works.
- New York Times HQ Buildings evaluation and calibration of active daylighting systems.
- Performance of Serraglaze light redirecting material.
- Multi-climate evaluations for VELUX.
- Daylighting performance of school buildings.
- Prediction of 'circadian potential' and non-visual effects.

Why here at the Radiance Workshop?

Climate files

Sky models

Building description

Simulation engines

Metrics and visualisation

Why here at the Radiance Workshop?

Simulation engines

Sensitivity Analysis + Inter-model comparison

3-Phase Method

5-Phase Method

Area wght. 30

UDI auto: 300 < E < 3000 lux

Area wght. 780

UDI supp: 100 < E < 300 lux

Area wght. 1235

UDI fell-short: E < 100 lux

Daylight Autonomy

Useful Daylight Illuminance UDI

UDI exceeded UDI-x > 3,000 lux **UDI** autonomous UDI-a 300 - 3,000 lux **UDI** supplementary UDI-s 100 - 300 lux **UDI** fell-short UDI-n < 100 lux

UDI exceeded Minimise UDI-x > 3,000 lux **UDI** autonomous Maximise UDI-a 300 - 3,000 lux **UDI** supplementary 100 - 300 lux **UDI** fell-short < 100 lux

UDI exceeded Minimise UDI-x > 3,000 lux **UDI** autonomous Maximise UDI-a 60%300 - 3,000 lux **UDI** supplementary 100 - 300 lux **UDI** fell-short < 100 lux

Sabre Trust Kindergarten / Arup - Ghana 2012

Sabre Trust Kindergarten / Arup - Ghana 2012

green building council australia

Climate-based daylight metrics (UDI) in the Priority Schools Building Programme (2013)

Wish-list

- Quality assured inputs
- Accurate definition of the metrics
- Supported CBDM software multiple vendors
- Design intent versus operational performance
- Affordable, 'smart' illuminance sensors
- Data on daylight recorded by BEMS
- Daylight in residential dwellings

References:

- J. Mardaljevic. *Daylight Simulation: Validation, sky models and Daylight Coefficients*. PhD Thesis, De Montfort University, Leicester, UK, 2000.
- A. Nabil and J. Mardaljevic. *Useful Daylight Illuminances: A replacement for daylight factors*. Energy and Building, 38(7), 2006.
- J. Mardaljevic. Examples of Climate-Based Daylight Modelling. CIBSE National Conference, London, UK, 2006.
- J. Mardaljevic. *Climate-Based Daylight Analysis for residential building*. 3rd VELUX Daylight Symposium, Rotterdam, NL, 2009.
- C. Reinhart. Daylight performance prediction. In: Building performance simulation for design and operation. Ed. by J.
- L. Hensen and R. Lamberts. Taylor & Francis, Chap. 9, 2011.
- J. Mardaljevic. Rethinking daylighting and compliance. Journal of Sustainable Engineering Design, 1(3):2–9, 2013.
- J. Mardaljevic and J. Christoffersen. *A Roadmap for Upgrading National/EU Standards for Daylight in Buildings*. CIE Midterm conference Towards a new century of Light, Paris, FR, 12-19 April, 2013.
- J. Mardaljevic, J. Christoffersen, and P. Raynham. *A Proposal for a European Standard for Daylight in Buildings*. Lux Europa, Krakow, PL, 17–19 September, 2013.

Education Funding Agency. PSBP: Facilities Output Specification. EFA, 2013.

Images credits:

J Mardaljevic, Why CBDM, CBDM report

A McNeil, The 3-Phase Method tutorial

C Ochoa et al., Daylight simulation engines

N Drosou, School building

Sabre Trust, Kindergarten classrooms in Ghana

Thank you!

Eleonora Brembilla

PhD Student E.Brembilla@lboro.ac.uk

Supervisors:

J Mardaljevic F Anselmo